Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(326)
(573)
(44)
(234)
(969)
(652)
(2114)
(64)
(92448)
(54)
(541)
(117)
(33)
(20)
(19)
(93277)
(3)
(17)
(1)
(351)
(300)
(6217)
(240)
(16)
(5)
(1621)
(16)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D7653-10 Standard Test Method for Determination of Trace Gaseous Contaminants in Hydrogen Fuel by Fourier Transform Infrared (FTIR) Spectroscopy
    Edition: 2010
    $103.58
    Unlimited Users per year

Description of ASTM-D7653 2010

ASTM D7653 - 10

Standard Test Method for Determination of Trace Gaseous Contaminants in Hydrogen Fuel by Fourier Transform Infrared (FTIR) Spectroscopy

Active Standard ASTM D7653 | Developed by Subcommittee: D03.14

Book of Standards Volume: 05.06




ASTM D7653

Significance and Use

Fuel cell users have implicated trace impurities in feed gases as compromising the performance and lifespan of proton exchange membrane fuel cells (PEMFCs). PEMFCs may be damaged by the presence of some contaminants through poisoning of fuel cell electrode materials therefore detection of these impurities at low concentrations is critical to fuel cell manufacturers and feed gas suppliers in order to support the facilities and infrastructure required for widespread applicability of fuel cells in transportation and energy production. With field-portable equipment, this test method can be used to quickly analyze hydrogen fuel for impurities at vehicle fueling stations or storage tanks used to supply stationary power plants. This test method can also be used by gas suppliers, customers and regulatory agencies to certify hydrogen fuel quality.

Users include hydrogen producers, gaseous fuel custody transfer stakeholders, fueling stations, fuel cell manufacturers, automotive manufacturers, regulators, and stationary fuel cell power plant operators.

1. Scope

1.1 This test method employs an FTIR gas analysis system for the determination of trace impurities in gaseous hydrogen fuels relative to the hydrogen fuel quality limits described in SAE TIR J2719 (April 2008) or in hydrogen fuel quality standards from other governing bodies. This FTIR method is used to quantify gas phase concentrations of multiple target contaminants in hydrogen fuel either directly at the fueling station or on an extracted sample that is sent to be analyzed elsewhere. Multiple contaminants can be measured simultaneously as long as they are in the gaseous phase and absorb in the infrared wavelength region. The detection limits as well as specific target contaminants for this standard were selected based upon those set forth in SAE TIR J2719.

1.2 This test method allows the tester to determine which specific contaminants for hydrogen fuel impurities that are in the gaseous phase and are active infrared absorbers which meet or exceed the detection limits set by SAE TIR J2719 for their particular FTIR instrument. Specific target contaminants include, but are not limited to, ammonia, carbon monoxide, carbon dioxide, formaldehyde, formic acid, methane, ethane, ethylene, propane and water. This test method may be extended to other impurities provided that they are in the gaseous phase or can be vaporized and are active infrared absorbers.

1.3 This test method is intended for analysis of hydrogen fuels used for fuel cell feed gases or for internal combustion engine fuels. This method may also be extended to the analysis of high purity hydrogen gas used for other applications including industrial applications, provided that target impurities and required limits are also identified.

1.4 This test method can be used to analyze hydrogen fuel sampled directly at the point-of-use from fueling station nozzles or other feed gas sources. The sampling apparatus includes a pressure regulator and metering valve to provide an appropriate gas stream for direct analysis by the FTIR spectrometer.

1.5 This test method can also be used to analyze samples captured in storage vessels from point-of-use or other sources. Analysis of the stored samples can be performed either in a mobile laboratory near the sample source or in a standard analytical laboratory.

1.6 A test plan should be prepared that includes (1) the specific impurity species to be measured, (2) the concentration limits for each impurity species, (3) the determination of the minimum detectable concentration for each impurity species as measured on the apparatus before testing.

1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.7.1 Exception All values are based upon common terms used in the industry of those particular values and when not consistent with SI units, the appropriate SI unit will be included in parenthesis after the common value usage. (4.4, 7.8, 7.9, 10.5, and 11.6)

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D5287 Practice for Automatic Sampling of Gaseous Fuels

D6348 Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy

D7606 Practice for Sampling of High Pressure Hydrogen and Related Fuel Cell Feed Gases

SAE Document

SAETIRJ2719 Informational Report on the Development of a Hydrogen Quality Guideline for Fuel Cell Vehicles

EPA Documents

EPA40CFRProtectionof Performance Specification for Extractive FTIR Continuous Emissions Monitoring Systems in Stationary Sources

Other Document

FourierTransf Peter R. Griffiths and James A. de Haseth, John Wiley and Son, 2007.

Keywords

Fourier Transform infrared spectroscopy; FTIR; fuel cell; hydrogen fuel; hydrogen gas; impurity detection;


ICS Code

ICS Number Code 71.100.20 (Gases for industrial application)


DOI: 10.1520/D7653-10

ASTM International is a member of CrossRef.

ASTM D7653

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $5,835.44 Buy
VAR
ASTM
[+] $1,085.08 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X